Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605293

RESUMO

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolismo , Tolerância ao Sal/genética , Transcriptoma , Lignina/metabolismo , Flavonoides/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Transporte de Íons , Carbono/metabolismo , Solo , Fatores de Transcrição/genética
2.
J Agric Food Chem ; 72(18): 10257-10270, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38661009

RESUMO

Drought stress has become the primary severe threat to global agriculture production, including medicinal plants. Plant growth-promoting bacteria (PGPB) and environmentally friendly element silicon (Si) have emerged as effective methods in alleviating drought stress in various plants. Here, the effects of the plant endophytic G5 interaction with Si on regulating nitrogen absorption, assimilation, and metabolism pathways were investigated in the morphophysiological and gene attributes of Glycyrrhiza uralensis exposed to drought. Results showed that G5+Si application improved nitrogen absorption and assimilation by increasing the available nitrogen content in the soil, further improving the nitrogen utilization efficiency. Then, G5+Si triggered the accumulation of the major adjustment substances proline, γ-aminobutyric acid, putrescine, and chlorophyll, which played an important role in contributing to maintaining balance and energy supply in G. uralensis exposed to drought. These findings will provide new ideas for the combined application of PGPR and Si on both soil and plant systems in a drought habitat.


Assuntos
Secas , Endófitos , Glycyrrhiza uralensis , Nitrogênio , Silício , Nitrogênio/metabolismo , Silício/metabolismo , Endófitos/metabolismo , Endófitos/fisiologia , Glycyrrhiza uralensis/microbiologia , Glycyrrhiza uralensis/metabolismo , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/genética , Bacillus/metabolismo , Estresse Fisiológico , Clorofila/metabolismo , Solo/química , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo
3.
J Ethnopharmacol ; 328: 118101, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38527575

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: This research substantiates the traditional use of Glycyrrhiza uralensis Fisch. for liver health, with scientific evidence of the non-toxic and lipid-lowering properties of licorice sprout extracts. The sprouts' rich mineral and amino acid content, along with their strong antioxidant activity, reinforce their value in traditional medicine. These findings bridge ancient herbal practices with modern science, highlighting licorice's potential in contemporary therapeutic applications. AIM OF THE STUDY: The study aimed to investigate the dietary and medicinal potential of G. uralensis sprouts by assessing their safety, nutritional content, and antioxidant properties using both plant and animal models. Specifically, the study sought to determine the effects of different sizes of licorice sprouts on lipid metabolism in human liver cancer cells and their overall impact on rat health indicators. MATERIALS AND METHODS: The study examined the effects of aqueous and organic extracts from G. uralensis sprouts of varying lengths on the cytotoxicity, lipid metabolism, and antioxidant activity in HepG2 cells, alongside in vivo impacts on Sprague-Dawley rats, using MTT, ICP, and HPLC. It aimed to assess the potential health benefits of licorice sprouts by analyzing their protective effects against oxidative stress and their nutritional content. RESULTS: Licorice sprout extracts from G. uralensis demonstrated no cytotoxicity in HepG2 cells, significantly reduced lipid levels, and enhanced antioxidant activities, with the longest sprouts (7 cm) showing higher mineral, sugar, and arginine content as well as increased glycyrrhizin and liquiritigenin. In vivo studies with Sprague-Dawley rats revealed weight gain and improved antioxidant enzyme activities in blood plasma and liver tissues after consuming the extracts, highlighting the sprouts' dietary and therapeutic potential. CONCLUSIONS: This study is the first to demonstrate that G. uralensis sprouts, particularly those 7 cm in length, have no cytotoxic effects, reduce lipids, and have high mineral and antioxidant contents, offering promising dietary and therapeutic benefits.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza , Ratos , Humanos , Animais , Glycyrrhiza uralensis/química , Glycyrrhiza/química , Antioxidantes/farmacologia , Antioxidantes/análise , Ratos Sprague-Dawley , Raízes de Plantas/química , Extratos Vegetais/química , Minerais/análise , Lipídeos
4.
BMC Plant Biol ; 24(1): 165, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431542

RESUMO

BACKGROUND: Glycyrrhiza uralensis Fisch., a valuable medicinal plant, shows contrasting salt tolerance between seedlings and perennial individuals, and salt tolerance at seedling stage is very weak. Understanding this difference is crucial for optimizing cultivation practices and maximizing the plant's economic potential. Salt stress resistance at the seedling stage is the key to the cultivation of the plant using salinized land. This study investigated the physiological mechanism of the application of glycine betaine (0, 10, 20, 40, 80 mM) to seedling stages of G. uralensis under salt stress (160 mM NaCl). RESULTS: G. uralensis seedlings' growth was severely inhibited under NaCl stress conditions, but the addition of GB effectively mitigated its effects, with 20 mM GB had showing most significant alleviating effect. The application of 20 mM GB under NaCl stress conditions significantly increased total root length (80.38%), total root surface area (93.28%), and total root volume (175.61%), and significantly increased the GB content in its roots, stems, and leaves by 36.88%, 107.05%, and 21.63%, respectively. The activity of betaine aldehyde dehydrogenase 2 (BADH2) was increased by 74.10%, 249.38%, and 150.60%, respectively. The 20 mM GB-addition treatment significantly increased content of osmoregulatory substances (the contents of soluble protein, soluble sugar and proline increased by 7.05%, 70.52% and 661.06% in roots, and also increased by 30.74%, 47.11% and 26.88% in leaves, respectively.). Furthermore, it markedly enhanced the activity of antioxidant enzymes and the content of antioxidants (SOD, CAT, POD, APX and activities and ASA contents were elevated by 59.55%, 413.07%, 225.91%, 300.00% and 73.33% in the root, and increased by 877.51%, 359.89%, 199.15%, 144.35%, and 108.11% in leaves, respectively.), and obviously promoted salt secretion capacity of the leaves, which especially promoted the secretion of Na+ (1.37 times). CONCLUSIONS: In summary, the exogenous addition of GB significantly enhances the salt tolerance of G. uralensis seedlings, promoting osmoregulatory substances, antioxidant enzyme activities, excess salt discharge especially the significant promotion of the secretion of Na+Future studies should aim to elucidate the molecular mechanisms that operate when GB regulates saline stress tolerance.


Assuntos
Antioxidantes , Glycyrrhiza uralensis , Humanos , Antioxidantes/metabolismo , Betaína/farmacologia , Betaína/metabolismo , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia , Plântula/metabolismo
5.
J Nat Med ; 78(2): 267-284, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38133706

RESUMO

Our representative studies to achieve sustainable use of crude drugs and ensure their stable quality are introduced: comprehensive studies on genetic, chemical, and sometimes pharmacological diversity of Asian medicinal plants including Paeonia lactiflora, Glycyrrhiza uralensis, Ephedra spp., Saposhnikovia divaricata, and Curcuma spp., as well as their related crude drugs. (1) For peony root, after genetic and chemical diversity analysis of crude drug samples including white and red peony root in China, the value-added resources with quality similar to red peony root were explored among 61 horticultural P. lactiflora varieties, and two varieties were identified. In addition, an optimized post-harvest processing method, which resulted in high contents of the main active components in the produced root, was developed to promote cultivation and production of brand peony root. (2) Alternative resources of glycyrrhiza, ephedra herb and saposhnikovia root and rhizome of Japanese Pharmacopoeia grade were discovered in eastern Mongolia after field investigation and quality assessment comparing Mongolian plants with Chinese crude drugs. Simultaneously, suitable specimens and prospective regions for cultivation were proposed. (3) Because of the wide distribution and morphological similarities of Curcuma species, classification of some species is debated, which leads to confusion in the use of Curcuma crude drugs. Molecular analyses of the intron length polymorphism (ILP) markers in genes encoding diketide-CoA synthase (DCS) and curcumin synthase (CURS) and trnK sequences, combined with essential oils analysis, were demonstrated as useful for standardization of Curcuma crude drugs. The above studies, representing various facets, can be applied to other crude drugs.


Assuntos
Apiaceae , Glycyrrhiza uralensis , Paeonia , Plantas Medicinais , Plantas Medicinais/genética , Estudos Prospectivos , Rizoma , Paeonia/química , Apiaceae/química , Padrões de Referência
6.
J Ethnopharmacol ; 319(Pt 3): 117372, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37913830

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dioscorea bulbifera L. (Rhizoma Dioscoreae Bulbiferae; RDB) is commonly used as an expectorant and cough suppressant herb but is accompanied by severe hepatotoxicity. Using the juice of auxiliary herbs (such as Glycyrrhiza uralensis Fisch. (Glycyrrhizae Radix et Rhizoma; GRR) juice) in concocting poisonous Chinese medicine is a conventional method to reduce toxicity or increase effects. Our previous study found that concoction with GRR juice provided a detoxifying effect against the major toxic hepatotoxicity induced by RDB, but the principle for the detoxification of the concoction is unknown to date. AIM OF THE STUDY: The principle of concoction was investigated by using the processing excipient GRR juice to reduce the major toxic hepatotoxicity of RDB, and the efficacy of RDB as an expectorant and cough suppressant was enhanced. MATERIALS AND METHODS: In this study, common factors (RDB:GRR ratio, concocted temperature, and concocted time) in the concoction process were used for the preparation of each RDB concocted with GRR juice by using an orthogonal experimental design. We measured the content of the main toxic compound diosbulbin B (DB) and serum biochemical indicators and performed pathological analysis in liver tissues of mice to determine the best detoxification process of RDB concocted with GRR juice. On this basis, the biological mechanisms of target organs were detected by Western blot and enzyme-linked immunosorbent assay at the inflammation and apoptosis levels. Further, the effects of RDB on expectorant and cough suppressant with GRR juice were evaluated by the conventional tests of phenol red expectorant and concentrated ammonia-induced cough. Lastly, the major compounds in the GRR juice introduced to RDB concoction were determined. RESULTS: RDB concocted with GRR juice significantly alleviated DB content, serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase levels, and improved liver pathological damages. The best detoxification process was achieved by using an RDB:GRR ratio of 100:20 at 120 °C for 20 min. Further, RDB concocted with GRR juice down-regulated the protein levels of nuclear factor kappa B (NF-κB), cyclooxygenase 2 (COX-2), and Bcl-2 related X protein (Bax) in the liver and enhanced the expectorant and cough suppressant effects of RDB. Finally, liquiritin (LQ) and glycyrrhizic acid (GA) in the GRR juice were introduced to the RDB concoction. CONCLUSION: Concoction with GRR juice not only effectively reduced the major toxic hepatotoxicity of RDB but also enhanced its main efficacy as an expectorant and cough suppressant, and that the rationale for the detoxification and/or potentiation of RDB was related to the reduction in the content of the main hepatotoxic compound, DB, the introduction of the hepatoprotective active compounds, LQ and GA, in the auxiliary GRR juice, as well as the inhibition of NF-κB/COX-2/Bax signaling-mediated inflammation and apoptosis.


Assuntos
Antitussígenos , Doença Hepática Induzida por Substâncias e Drogas , Dioscorea , Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Glycyrrhiza , Camundongos , Animais , Glycyrrhiza uralensis/química , Expectorantes , Antitussígenos/farmacologia , Excipientes , Dioscorea/química , NF-kappa B , Ciclo-Oxigenase 2 , Proteína X Associada a bcl-2 , Medicamentos de Ervas Chinesas/análise , Glycyrrhiza/química , Inflamação
7.
J Ethnopharmacol ; 319(Pt 3): 117376, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37918551

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a classical prescription for treating spleen deficiency syndrome (SDS), Sijunzi decoction (SJZD) is composed of Ginseng Radix et Rhizoma (RG, Panax ginseng C.A.Mey.), Atractylodes Macrocephalae Rhizoma (AM, Atractylodes macrocephala Koidz.), Poria (Poria cocos (Schw.) Wolf) and Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle (GRP, processed from Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat. or Glycyrrhiza glabra L.). The non-polysaccharides (NPSs) are the pharmacodynamic substance basis of SJZD, whose pharmacokinetics in SDS rats were elaborated previously. Further study on their tissue distribution and excretion properties is of significance for understanding the compatibility laws of SJZD. AIM OF THE STUDY: The aim was to unravel the tissue distribution and excretion characteristics of NPSs of SJZD in SDS rats, and explore the scientific connotation of SJZD compatibility. MATERIALS AND METHODS: A validated ultrafast liquid chromatography tandem mass spectrometry method was developed for monitoring the accurate dynamics of sixteen components in the tissues, feces and urine of SDS rats. The four incomplete formulae of SJZD were prepared by randomly deleting one herb to uncover the herb-herb interactions. RESULTS: All components of NPSs in SJZD were distributed in the tissues, except for ononin in the heart. Among them, glycyrrhetinic acid and atractylenolide III were more abundant in the liver and lung, respectively, while other components were enriched in the ileum, especially saponins. The evaluation of fecal excretion and urinary excretion revealed the low cumulative excretion of all components. The comparative analysis of incomplete formulae indicated that the tissue distribution and excretion became faster after removing Poria from SJZD, while a lack of RG led to slower tissue distribution. The tissue distribution at most time points was reduced when AM was absent. Further comprehensive visualization implied that SJZD compatibility can improve tissue distribution of the NPSs, especially ginsenosides and atractylenolide, at the specific time periods. CONCLUSION: The tissue distribution and excretion characteristics of NPSs of SJZD were elucidated in current research. Meanwhile, this study proposed new insights into the mechanism of SJZD compatibility rationality.


Assuntos
Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Esplenopatias , Ratos , Animais , Distribuição Tecidual , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas , Glycyrrhiza uralensis/química , Esplenopatias/tratamento farmacológico
8.
Stud Health Technol Inform ; 308: 396-403, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38007765

RESUMO

Primary splenic angiosarcoma is a very rare disease that causes the development of malignant tumors in the vascular endothelium of the splenic sinuses. Moreover, the disease maintains a very low survival rate for patients to live over 5 years, which is relatively low when compared to another splenic cancer, splenic lymphomas. The treatment options for splenic angiosarcoma narrow down to surgical removal or radiation combined with chemotherapy, but both cost a lot, so discovering potential alternative treatments may eventually increase the possible survival rate. Ginseng and Zhi Gan Cao are both common herbs in Traditional Chinese Medicine (TCM); however, the price of Ginseng is much higher than that of Zhi Gan Cao. A possible reason could be the frequent studies and researches over Ginseng's active ingredient, ginsenoside rh2 or rg3 as they are both potent cancer treatments. The reason to study Zhi Gan Cao and predict its possible potential in cancer treatment is due to the similarity between its active ingredient and the active ingredient in Ginseng, namely, ginsenoside rh2 and licorice saponins. Both TCM contain the active ingredient, triterpenoid saponin, as their main composition, and the further text will predict the possible research and results that may be taken in vitro to reveal the question of whether licorice saponin has the potential to become a major treatment for splenic angiosarcoma or not.


Assuntos
Glycyrrhiza uralensis , Hemangiossarcoma , Saponinas , Neoplasias Esplênicas , Humanos , Medicina Tradicional Chinesa , Neoplasias Esplênicas/tratamento farmacológico , Hemangiossarcoma/tratamento farmacológico , Fatores de Crescimento do Endotélio Vascular
9.
Zhongguo Zhong Yao Za Zhi ; 48(16): 4413-4420, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802867

RESUMO

The present study investigated the chemical constituents from the aerial parts of Glycyrrhiza uralensis. The ethanol extract of the aerial parts of G. uralensis was separated and purified by different column chromatographies such as macroporous resin, silica gel, and Sephadex LH-20, and through preparative HPLC and recrystallization. Thirteen compounds were isolated and identified as(2S)-6-[(Z)-3-hydroxymethyl-2-butenyl]-5,7,3'-trihydroxy-4'-methoxy-dihydroflavanone(1),(2S)-8-[(E)-3-hydroxymethyl-2-butenyl]-5,7,3',5'-tetrahydroxy-dihydroflavanone(2), α,α'-dihydro-5,4'-dihydroxy-3-acetoxy-2-isopentenylstilbene(3), 6-prenylquercetin(4), 6-prenylquercetin-3-methyl ether(5), formononetin(6), 3,3'-dimethylquercetin(7), chrysoeriol(8), diosmetin(9),(10E,12Z,14E)-9,16-dioxooctadec-10,12,14-trienoic acid(10), 5,7,3',4'-tetrahydroxy-6-prenyl-dihydroflavanone(11), naringenin(12), dibutylphthalate(13). Compounds 1-3 are new compounds, and compounds 10 and 13 are isolated from aerial parts of this plant for the first time.


Assuntos
Glycyrrhiza uralensis , Glycyrrhiza uralensis/química , Componentes Aéreos da Planta/química
10.
Aging (Albany NY) ; 15(12): 5290-5303, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37367832

RESUMO

The Glycyrrhiza uralensis Fisch. is a common traditional Chinese medicine. However, its aerial part is currently not widely studied and used. Therefore, we aimed to investigate the neuroprotective effects of total flavonoids in aerial stems and leaves of Glycyrrhiza uralensis Fisch. (GSF) by an in vitro LPS-induced HT-22 cell model and an in vivo Caenorhabditis elegans (C. elegans) model. In this study, cell apoptosis was evaluated by CCK-8 and Hoechst 33258 staining in LPS-induced HT-22 cells. Meanwhile, ROS level, mitochondrial membrane potential (MMP), and Ca2+ level were detected by the flow cytometer. In vivo, C. elegans was also investigated the effect of GSF on lifespan, spawning, and paralysis. Moreover, the survival of C. elegans to oxidative stimuli (juglone and H2O2), and the nuclear translocation of DAF-16 and SKN-1 were evaluated. The results showed that GSF could inhibit LPS-induced HT-22 cell apoptosis. Moreover, GSF decreased the levels of ROS, MMP, Ca2+, and malondialdehyde (MDA) and increased the activities of SOD and CAT in HT-22 cells. Furthermore, GSF did not affect the lifespan and laying of eggs of C. elegans N2. However, it delayed paralysis in C. elegans CL4176 in a dose-dependent manner. Meanwhile, GSF increased the survival rate of C. elegans CL2006 after juglone and H2O2 treatment, increased SOD and CAT, and decreased MDA levels. Importantly, GSF promoted the nuclear translocation of DAF-16 and SKN-1 in C. elegans TG356 and LC333, respectively. Taken together, GSF can play a protective role in neuronal cells by inhibiting oxidative stress.


Assuntos
Proteínas de Caenorhabditis elegans , Glycyrrhiza uralensis , Fármacos Neuroprotetores , Animais , Caenorhabditis elegans/metabolismo , Flavonoides/farmacologia , Flavonoides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Glycyrrhiza uralensis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Folhas de Planta , Paralisia
11.
Drug Des Devel Ther ; 17: 633-646, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875721

RESUMO

Background: Knee osteoarthritis (KOA) is the primary prevalent disabling joint disorder among osteoarthritis (OA), and there is no particularly effective treatment at the clinic. Traditional Chinese medicine (TCM) herbs, such as Eucommia ulmoides Oliv. and Glycyrrhiza uralensis Fisch. (E.G.) couplet medicines, have been reported to exhibit beneficial health effects on KOA, exact mechanism of E.G. nevertheless is not fully elucidated. Purpose: We assess the therapeutic effects of E.G. on KOA and explore its underlying molecular mechanism. Methods: UPLC-Q-TOF/MS technique was used to analyze the active chemical constituents of E.G. The destabilization of the medial meniscus model (DMM) was employed to evaluate the chondroprotective action of E.G. in KOA mice using histomorphometry, µCT, behavioral testing and immunohistochemical staining. Additionally, network pharmacology and molecular docking were used to predict potential targets for anti-KOA activities of E.G., which was further verified through in vitro experiments. Results: In vivo studies have shown that E.G. could significantly ameliorate DMM-induced KOA phenotypes including subchondral bone sclerosis, cartilage degradation, gait abnormality and thermal pain reaction sensibility. E.G. treatment could also promote extracellular matrix synthesis to protect articular chondrocytes, which was indicated by Col2 and Aggrecan expressions, as well as reducing matrix degradation by inhibiting MMP13 expression. Interestingly, network pharmacologic analysis showed that PPARG might be a therapeutic center. Further study proved that E.G.-containing serum (EGS) could up-regulate PPARG mRNA level in IL-1ß-induced chondrocytes. Notably, significant effects of EGS on the increment of anabolic gene expressions (Col2, Aggrecan) and the decrement of catabolic gene expressions (MMP13, Adamts5) in KOA chondrocytes were abolished due to the silence of PPARG. Conclusion: E.G. played a chondroprotective role in anti-KOA by inhibiting extracellular matrix degradation, which might be related to PPARG.


Assuntos
Eucommiaceae , Glycyrrhiza uralensis , Osteoartrite do Joelho , Animais , Camundongos , Metaloproteinase 13 da Matriz , Agrecanas , Simulação de Acoplamento Molecular , Farmacologia em Rede , PPAR gama
12.
Appl Microbiol Biotechnol ; 107(7-8): 2671-2688, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36864204

RESUMO

Recently, endorhizospheric microbiota is realized to be able to promote the secondary metabolism in medicinal plants, but the detailed metabolic regulation metabolisms and whether the promotion is influenced by environmental factors are unclear yet. Here, the major flavonoids and endophytic bacterial communities in various Glycyrrhiza uralensis Fisch. roots collected from seven distinct places in northwest China, as well as the edaphic conditions, were characterized and analyzed. It was found that the soil moisture and temperature might modulate the secondary metabolism in G. uralensis roots partially through some endophytes. One rationally isolated endophyte Rhizobium rhizolycopersici GUH21 was proved to promote the accumulation of isoliquiritin and glycyrrhizic acid significantly in roots of the potted G. uralensis under the relatively high-level watering and low temperature. Furthermore, we did the comparative transcriptome analysis of G. uralensis seedling roots in different treatments to investigate the detailed mechanisms of the environment-endophyte-plant interactions and found that the low temperature went hand in hand with the high-level watering to activate the aglycone biosynthesis in G. uralensis, while GUH21 and the high-level watering cooperatively promoted the in planta glucosyl unit production. Our study is of significance for the development of methods to rationally promote the medicinal plant quality. KEY POINTS: • Soil temperature and moisture related to isoliquiritin contents in Glycyrrhiza uralensis Fisch. • Soil temperature and moisture related to the hosts' endophytic bacterial community structures. • The causal relation among abiotic factors-endophytes-host was proved through the pot experiment.


Assuntos
Flavonas , Glycyrrhiza uralensis , Plantas Medicinais , Glycyrrhiza uralensis/química , Glycyrrhiza uralensis/metabolismo , Glycyrrhiza uralensis/microbiologia , Endófitos , Terpenos/metabolismo , Glicosídeos/metabolismo , Raízes de Plantas/microbiologia
13.
J Ethnopharmacol ; 309: 116320, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-36828197

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiovascular complications are highly prevalent in patients with diabetes. Zhi-Gan-Cao-Tang (ZGCT), a famous traditional Chinese medicine (TCM) prescription, can be used for the treatment of diabetes with cardiovascular disease complications. ZGCT is composed of nine Chinese herbs: the radix and rhizoma of Glycyrrhiza uralensis Fisch. (Gancao in Chinese, 12 g), the radix of Rehmannia glutinosa Libosch. (Dihuang in Chinese, 50 g), the radix and rhizoma of Panax ginseng C. A. Mey. (Renshen in Chinese, 6 g), the radix of Ophiopogon japonicus (L. f.) Ker-Gawl. (Maidong in Chinese, 10 g), the fructus of Ziziphus jujuba Mill. (Dazao in Chinese, 18 g), the fructus of Cannabis sativa L. (Maren in Chinese, 10 g), Donkey-hide gelatine (Ejiao in Chinese, 6 g), the ramulus of Cinnamomum cassia Presl (Guizhi in Chinese, 9 g), and the fresh rhizoma of Zingiber officinale Rosc. (Shengjiang in Chinese, 9 g). Many of these Chinese herbs are also used in other systems of medicine (Japan, India, European, etc.). However, the effects and effective constituents of ZGCT against diabetic cardiovascular disease remain unclear. AIM OF THE STUDY: This study aimed to investigate the protective effect of ZGCT against diabetic myocardial infarction (DMI) injury in vivo and in vitro and to identify the effective constituents of ZGCT. MATERIALS AND METHODS: The in vivo effect on DMI injury was evaluated in a DMI mouse model. The in vitro effect and effective constituent screening experiments were conducted in an H9c2 cardiomyocyte injury model induced by high glucose and hypoxia. RESULTS: It was found that ZGCT significantly reduced myocardial infarction size and serum lactate dehydrogenase (LDH) levels in DMI mice. Myocardial histopathological experiments showed that ZGCT alleviated the disordered arrangement and fracture of muscle fibers and cell disappearance and reduced inflammatory cell infiltration. Cellular experiments showed that ZGCT inhibited cardiomyocyte apoptosis by decreasing the expression of the proapoptotic factor Bax. In addition, it inhibited inflammatory reactions by suppressing the activation of the IκBα/NF-κB pathway and the expression of iNOS. Eight constituents from six Chinese herbs in the recipe of ZGCT were found to enhance the viability of injured cardiomyocytes, and six effective constituents played protective roles through anti-apoptotic and/or anti-inflammatory activities. In addition, one of the effective constituents, glycyrrhizic acid, was verified in vivo to have cardioprotective effect on DMI mice. CONCLUSIONS: The TCM prescription ZGCT protects against DMI by inhibiting cardiomyocyte apoptosis and reducing inflammatory reactions. Eight effective constituents of ZGCT were identified. This study provides a scientific basis for the clinical application of ZGCT and is valuable for quality marker research on this prescription.


Assuntos
Antineoplásicos , Diabetes Mellitus , Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Infarto do Miocárdio , Camundongos , Animais , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Diabetes Mellitus/tratamento farmacológico , Inflamação/tratamento farmacológico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/prevenção & controle
14.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674447

RESUMO

Metformin, an antidiabetic drug, and Glycyrrhiza uralensis Fischer (GU), an oriental medicinal herb, have been reported to exert anti-obesity effects. This study investigated the synergistic action of metformin and GU in improving diet-induced obesity. Mice were fed a normal diet, a high-fat diet (HFD), or HFD + 0.015% GU water extract for 8 weeks. The HFD and GU groups were then randomly divided into two groups and fed the following diets for the next 8 weeks: HFD with 50 mg/kg metformin (HFDM) and GU with 50 mg/kg metformin (GUM). GUM prevented hepatic steatosis and adiposity by suppressing expression of mRNAs and enzyme activities related to lipogenesis in the liver and upregulating the expression of adipocyte mRNAs associated with fatty acid oxidation and lipolysis, and as a result, improved dyslipidemia. Moreover, GUM improved glucose homeostasis by inducing glucose uptake in tissues and upregulating mRNA expressions associated with glycolysis in the liver and muscle through AMP-activated protein kinase activation. GUM also improved inflammation by increasing antioxidant activity in the liver and erythrocytes and decreasing inflammatory cytokine productions. Here, we demonstrate that GU and metformin exert synergistic action in the prevention of obesity and its complications.


Assuntos
Glycyrrhiza uralensis , Doenças Metabólicas , Metformina , Animais , Camundongos , Metformina/efeitos adversos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Fígado/metabolismo , Doenças Metabólicas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL
15.
J Ethnopharmacol ; 302(Pt A): 115859, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36280017

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: A widely used traditional prescription, Yi-Gan San (YGS) is a remedy for neurodegenerative disorders. The formulation consists of seven Chinese medicinal materials in specific proportions, namely Uncariae Ramulus cum Uncis (Uncaria rhynchophylla (Miq.) Miq. ex Havil.), Bupleuri Radix (Bupleurum chinense DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Ligusticum wallichii Franch.), Poria (Poria cocos (Schw.) Wolf), Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala Koidz.) and Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch.). Using YGS has been shown to alleviate various behavioural and psychological symptoms of dementia (BPSD). AIM OF THIS REVIEW: The goal of this review is to give up-to-date information about the traditional uses, chemistry, pharmacology and clinical efficacy of YGS based on the scientific literature and to learn the current focus and provide references in the next step. MATERIALS AND METHODS: The database search room was accessed using the search terms "Yi-Gan San" and "Yokukansan" to obtain results from resources such as Web of Science, PubMed, Google Scholar and Sci Finder Scholar. We not only consulted the literature of fellow authors for this review but also explored classical medical books. RESULTS: YGS has been used to cure neurosis, sleeplessness, night weeping and restlessness in infants. Its chemical components primarily consist of triterpenes, flavonoids, phenolics, lactones, alkaloids and other types of compounds. These active ingredients displayed diverse pharmacological activities to ameliorate BPSD by regulating serotonergic, glutamatergic, cholinergic, dopaminergic, adrenergic, and GABAergic neurotransmission. In addition, YGS showed neuroprotective, antistress, and anti-inflammatory effects. The majority of cases of neurodegenerative disorders are treated with YGS, including Alzheimer's disease and dementia with Lewy bodies. CONCLUSIONS: Based on previous studies, YGS has been used as a traditional prescription in East Asia, such as Japan, Korea and China, and it has diverse chemical compounds and multiple pharmacological activities. Nevertheless, few experimental studies have focused on chemical and quantitative YGS studies, suggesting that further comprehensive research on its chemicals and quality assessments is critical for future evaluations of drug efficacy.


Assuntos
Angelica sinensis , Atractylodes , Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Angelica sinensis/química , Prescrições
16.
J Sep Sci ; 46(2): e202200433, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36373183

RESUMO

Quality consistency of Glycyrrhiza formula granules is essential for guaranteeing clinical efficacy. However, a suitable method to accurately and conveniently evaluate the consistency of the clinical efficacy of Glycyrrhiza formula granules is currently not available. This study established a method for the simultaneous determination of 12 active components in Glycyrrhiza formula granules using ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry. The rate of inhibition of cyclooxygenase-2 by different batches of Glycyrrhiza formula granules was determined. Near-infrared spectra were collected for different batches of Glycyrrhiza formula granules to detect their biological activity in the inhibition of cyclooxygenase-2. The quality consistency of the 11 batches of Glycyrrhiza formula granules was evaluated using principal component and correlation analyses. The results showed significant differences in the formula granules of Glycyrrhiza uralensis produced by the different manufacturers. Some differences were also observed among batches of formula granules produced by the same manufacturer. Correlation analysis of the chemical components and cyclooxygenase-2 activity showed that glycyrrhizic acid, liquiritin, and isoliquiritin were the main active components of Glycyrrhiza. Correlation analysis of the near-infrared spectra and cyclooxygenase-2 inhibition activity showed a high correlation between the active components and three characteristic bands: 3383-3995, 4227-4651, and 5315-5878 cm-1 . In this study, the main active anti-inflammatory components of Glycyrrhiza granules were screened. Thus, the near-infrared spectrum and characteristic active band of multi-index active components can be used to quickly detect the quality consistency of Glycyrrhiza formula granules, thereby improving the ability to control the quality and consistency of these granules.


Assuntos
Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Glycyrrhiza , Medicamentos de Ervas Chinesas/análise , Ciclo-Oxigenase 2 , Glycyrrhiza/química , Glycyrrhiza uralensis/química , Ácido Glicirrízico/análise , Cromatografia Líquida de Alta Pressão/métodos
17.
J Ethnopharmacol ; 300: 115704, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096345

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Glycyrrhiza uralensis Fisch (RC) and Coptis chinensis Franch (RG) are traditional Chinese medicines, which are classic drug pair in prescriptions to treat gastrointestinal diseases. Multi-herb therapy is one of the most important features of traditional Chinese medicine, but due to the complex components of herbal decoctions, the substances that actually exert their medicinal effects have not been fully elucidated. The discovery of Glycyrrhiza uralensis Fisch and Coptis chinensis Franch supramolecular parts (RC-RG SA) can provide a new perspective for explaining the mechanism of drug-pair compatibility. AIM OF THE STUDY: The purpose of this study was to explore the active composition and identification of chemical constituents of RC-RG SA, and to explore the inhibitory effects of supramolecular parts on S. aureus and biofilm. MATERIALS AND METHODS: The micromorphology of RC-RG SA was characterized by SEM and DLS. Intermolecular forces between Glycyrrhiza uralensis Fisch and Coptis chinensis Franch determined by ITC. The chemical constituents of RC-RG SA were systematically analyzed by UPLC-ESI-MSn. The inhibitory effect of RC-RG SA on S. aureus was determined by turbidimetric method and plate coating method. The scavenging effect of RC-RG SA supramolecular parts on S. aureus biofilm were observed by MTT method, SEM and LSCM, respectively. RESULTS: The microstructure of RC-RG SA was spherical with a particle size of 161.6 nm. ITC proved that the reaction between decoction of RC and RG was exothermic. A total of 70 compounds were preliminarily identified in RC-RG SA, including 34 flavonoids, 34 alkaloids and 2 triterpenoids. The inhibitory effect of RC-RG supramolecular parts on S. aureus proliferation and the ability to clear S. aureus biofilm were better than RC-RG co-decoction and RC-RG non-supramolecular parts. CONCLUSIONS: The Glycyrrhiza uralensis Fisch and Coptis chinensis Franch co-decoctions' supramolecular components were an important substance that exerts its medicinal effect. Current study provided supramolecular strategies to reveal the active ingredients and the medicinal effect of the traditional Chinese medicine decoction.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Triterpenos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides , Glycyrrhiza uralensis/química , Medicina Tradicional Chinesa , Staphylococcus aureus
18.
Chin J Integr Med ; 29(4): 325-332, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35997860

RESUMO

OBJECTIVE: To evaluate the antidiarrheal effect of ethanol extract of Glycyrrhiza uralensis Fisch root (GFR) in vivo and jejunal contraction in vitro. METHODS: In vivo, 50 mice were divided into negative control, positive control (verapamil), low-, medium- and high-dose GFR (250, 500, 1,000 mg/kg) groups by a random number table, 10 mice in each group. The antidiarrheal activity was evaluated in castor oil-induced diarrhea mice model by evacuation index (EI). In vitro, the effects of GFR (0.01, 0.03, 0.1, 0.3, 1, 3, and 10 g/L) on the spontaneous contraction of isolated smooth muscle of rabbit jejunum and contraction of pretreated by Acetylcholine (ACh, 10 µmol/L) and KCl (60 mmol/L) were observed for 200 s. In addition, CaCl2 was accumulated to further study its mechanism after pretreating jejunal smooth muscle with GFR (1 and 3 g/L) or verapamil (0.03 and 0.1 µmol/L) in a Ca2+-free-high-K+ solution containing ethylene diamine tetraacetic acid (EDTA). RESULTS: GFR (500 and 1,000 mg/kg) significantly reduced EI in castor oil-induced diarrhea model mice (P<0.01). Meanwhile, GFR (0.01, 0.03, 0.1, 0.3, 1, 3, and 10 g/L) inhibited the spontaneous contraction of rabbit jejunum (P<0.05 or P<0.01). Contraction of jejunums samples pretreated by ACh and KCl with 50% effective concentration (EC50) values was 1.05 (0.71-1.24), 0.34 (0.29-0.41) and 0.15 (0.11-0.20) g/L, respectively. In addition, GFR moved the concentration-effect curve of CaCl2 down to the right, showing a similar effect to verapamil. CONCLUSIONS: GFR can effectively against diarrhea and inhibit intestinal contraction, and these antidiarrheal effects may be based on blocking L-type Ca2+ channels and muscarinic receptors.


Assuntos
Antidiarreicos , Glycyrrhiza uralensis , Camundongos , Coelhos , Animais , Antidiarreicos/efeitos adversos , Jejuno , Óleo de Rícino/efeitos adversos , Cloreto de Cálcio/efeitos adversos , Diarreia/tratamento farmacológico , Extratos Vegetais/efeitos adversos , Verapamil/efeitos adversos , Contração Muscular
19.
Artigo em Inglês | WPRIM | ID: wpr-982281

RESUMO

OBJECTIVE@#To evaluate the antidiarrheal effect of ethanol extract of Glycyrrhiza uralensis Fisch root (GFR) in vivo and jejunal contraction in vitro.@*METHODS@#In vivo, 50 mice were divided into negative control, positive control (verapamil), low-, medium- and high-dose GFR (250, 500, 1,000 mg/kg) groups by a random number table, 10 mice in each group. The antidiarrheal activity was evaluated in castor oil-induced diarrhea mice model by evacuation index (EI). In vitro, the effects of GFR (0.01, 0.03, 0.1, 0.3, 1, 3, and 10 g/L) on the spontaneous contraction of isolated smooth muscle of rabbit jejunum and contraction of pretreated by Acetylcholine (ACh, 10 µmol/L) and KCl (60 mmol/L) were observed for 200 s. In addition, CaCl2 was accumulated to further study its mechanism after pretreating jejunal smooth muscle with GFR (1 and 3 g/L) or verapamil (0.03 and 0.1 µmol/L) in a Ca2+-free-high-K+ solution containing ethylene diamine tetraacetic acid (EDTA).@*RESULTS@#GFR (500 and 1,000 mg/kg) significantly reduced EI in castor oil-induced diarrhea model mice (P<0.01). Meanwhile, GFR (0.01, 0.03, 0.1, 0.3, 1, 3, and 10 g/L) inhibited the spontaneous contraction of rabbit jejunum (P<0.05 or P<0.01). Contraction of jejunums samples pretreated by ACh and KCl with 50% effective concentration (EC50) values was 1.05 (0.71-1.24), 0.34 (0.29-0.41) and 0.15 (0.11-0.20) g/L, respectively. In addition, GFR moved the concentration-effect curve of CaCl2 down to the right, showing a similar effect to verapamil.@*CONCLUSIONS@#GFR can effectively against diarrhea and inhibit intestinal contraction, and these antidiarrheal effects may be based on blocking L-type Ca2+ channels and muscarinic receptors.


Assuntos
Camundongos , Coelhos , Animais , Antidiarreicos/efeitos adversos , Jejuno , Glycyrrhiza uralensis , Óleo de Rícino/efeitos adversos , Cloreto de Cálcio/efeitos adversos , Diarreia/tratamento farmacológico , Extratos Vegetais/efeitos adversos , Verapamil/efeitos adversos , Contração Muscular
20.
J Ethnopharmacol ; 299: 115686, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36067839

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Licorice, called Gan-Cao in China, is one of the most popular traditional herbal medicines. It is derived from the dried roots and rhizomes of Glycyrrhiza uralensis, G. glabra, and G. inflata. Licorice is recorded in the pharmacopoeias of China, Japan, US, and Europe. AIM: This review updates research progress of licorice from the perspectives of chemical analysis, quality evaluation, drug metabolism, and pharmacokinetic studies from 2009 to April 2022. MATERIALS AND METHODS: Both English and Chinese literatures were collected from databases including PubMed, Elsevier, Web of Science, and CNKI (Chinese). Licorice, extraction, structural characterization/identification, quality control, metabolism, and pharmacokinetics were used as keywords. RESULTS: Newly developed analytical methods, including LC/UV, 2DLC, LC/MS, GC/MS, and mass spectrometry imaging (MSI) for chemical analysis of licorice were summarized. CONCLUSION: This review provides a comprehensive summary on chemical analysis of licorice.


Assuntos
Medicamentos de Ervas Chinesas , Glycyrrhiza uralensis , Glycyrrhiza , Triterpenos , Medicamentos de Ervas Chinesas/farmacologia , Glycyrrhiza/química , Glycyrrhiza uralensis/química , Rizoma/química , Triterpenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA